Collections
Classifiers purpose-built for specialist tasks.
classify_uniclass
classify_uniclass(text, filter='', title='N/A', model=None)
Classifies the input text to a matching Uniclass code. Implements the Hoppa HARDR algorithm - a multi-step approach leveraging vector similarity search and LLM steps - with Azure OpenAI.
More information on Uniclass can be found at: https://uniclass.thenbs.com/
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
input text to be classified. |
required |
title
|
str
|
a brief title for the input text. |
'N/A'
|
filter
|
str
|
an ODATA query to filter to Uniclass table (subsystem). See examples below. |
''
|
model
|
str
|
Model deployment name within your Azure resource. If not provided will default to environment variable |
None
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
JSON-formatted dictionary containing:
|
Examples:
Classify to the Products table only.
>>> classify_uniclass(text="In-situ reinforced concrete upstand beam", filter="subsystem eq Products")
beta_classify_etim
beta_classify_etim()
Classifies the input text to a matching ETIM code.
More information on Omniclass can be found at: https://www.etim-international.com/.
beta_classify_omniclass
beta_classify_omniclass()
Classifies the input text to a matching Omniclass code.
More information on Omniclass can be found at: https://www.csiresources.org/standards/omniclass.